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4 ABSTPACT

* A 2-D digital filter with a rational frequency response

can be expanded into an infinite sequence of filtering opera-

tions. Each filtering operation can be implemented by con-

volution with a low-order 2-D finite-extent impulse response.

This sequence of filtering operations can be viewed as an

iteration where a new estimate of the output signal is formed

from the previous estimate. If a convergence constraint is

satisfied, the sequence of estimates will approach the desired

output signal. In practice, the number of iterations is finite.

Consequently, the frequency response that is actually realized

by the iterative implementation is an approximation to the

desired rational frequency response.
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A. INTRODUCTION

For digital signal processing tasks that are not per-

formed in real time, a processor may have access, at least

conceptually, to the entire input signal and the entire

output signal. This seems to be particularly true for image

processing tasks. An entire image, residing somewhere in the

computer system, is used as the input to a processing program

that generates an entire output image. In these cases, it

seems plausible to consider examining the output image and

using it in conjunction with the input image to form a "better"

output image.

The iterative implementation for 2-D digital filters

described below uses this familiar concept of feedback in an

interesting way. A 2-D rational frequency response can be

used to form an iterative computation involving only finite-

extent impulse response (FIR) filtering operations. The

rational frequency response can be theoretically implemented

by applying the iterative computation an infinite number of

times, providing a convergence criterion is met. In practice,

of course, the iterative computation is applied only a finite

number of times, so the frequency response that is actually

realized is an approximation to the original rational

frequency response.

The iterative implementation seems well-suited to diqital

processors that have the ability to convolve a 2-D signal with

a filter kernel of limited extent. With repeated applications

of the iterative computation, these processors can be used to

implement kernels of much larger extent and greater filtering

ability.
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Because the iterative computation involves only FIR

filtering operations, the iterative implementation can be used

to approximate some real symmetric 2-D rational frequency responses

without the necessity of 2-D spectral factorization [1,2].

Consequently, 2-D filter design methods that yield real rational

frequency responses [1,2] could potentially be used to design

filters for the iterative implementation. Furthermore, 2-D

real rational frequency responses could be obtained by applying

a McClellan-type transformation [3,41 to 1-D real rational

frequency responses.
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B. DERIVATION OF THE ITERATIVE COMPUTATION

A 2-D rational frequency response can be written

H(w1I, 2 ) = A(wIW 2 )/B(w IU1 2 ) (l)

where A(wIW 2 ) and B(wlw 2 ) are trigonometric polynominals

given by

AA(w w2 ) F E I a(m,m 2 ) expL-jw 1 m1 -jw 2m2] (2)

B(w, 1 w2 ) E E b(nl1 n 2 ) exp[-jw 1 n1 -jw2 n2] (3)

n1 n 2

It is assumed that the above sums have a finite number of terms;

the arrays a(mlVm 2 ) and b(nl,n 2 ) have finite extent. Without

losing any generality, we can also assume that the ratio

A(wj,w2 )/B(w1lw 2 ) is normalized so that b(O,O)= 1.

Now we define the function

A
C(W ,w 2) I-B(wI, 2 )

= I I c(nl,n 2) exp-jw1 n1 -jw2n 2] (4)

n1 n2
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whe re

c(nln 2) =-b(nl,n 2) for (nl,n 2 )4(0,0) (5)

= 0 for (nl 1 n 2 )=(0,0)

Using the definition of C(wIw 2 ), we can write

H(wlw 2 ) = A(NIw 2 )/[l-C(wlWI2 )J (6)

If we define X(wIw 2 ) as the spectrum of the filter's input
signal x(n1 n2 ) and Y(w 1 W2 ) as the spectrum of the filter's

output signal y(nl,n 2 ) and we assume that both 1Y(W1 ,W2) I and
X(Wl,"2 )1 are bounded, then

Y(W1 , 2) H(w1 "w2 )X(wl,W 2 )

= A(wlw 2 )X(wl, w 2 )/[I-C(1 I, 2 )] (7)

or

Y(wl w 2 ) = A( 1 1 2 )X(wIW 2 )+C(WI, 2 )Y(WI,"2 ) (8)

This implicit formula for the output spectrum suggests the

iterative formulation

Y (WP 0

yi (1 2 ) _ A(NI 1 W2 )X(wI,W 2 )+C(wI,W 2 )yiI(W 1 ,W2) (9)

4 - r-



After I iterations, we will have

I

YI(w1IW 2 ) = A(w1 , w 2 ) X(W 1 ,"2) E Ci ( I , 2 )

i=O

Letting I goes to infinity, we see that

Y(W 1 1W2 ) = A(wI,W 2 ) X(wlW 2 ) c

i=0

= A(w ,w2 ) X(W1 w2 )/Il-C(wl, 2 )] (10)

The iterative solution will converge to the desired filter

output if the geometric series in equation (10) converges.

To ensure this, we impose the restriction

IC( 1, W2 )1 < i (11)

Because a(ml,m 2 ) and c(n1 n2 ) are finite-extent

arrays, the filtering operations necessary to implement the

iteration (9) are FIR operations. Consequently, the rational

frequency response (6) can be implemented exactly by an in-

finite number of FIR filtering operations.

If condition (11) is indeed true, then it is possible

to show that Yi (wlW 2 ) converges uniformly to Y(WlW 2 ) as

i goes to infinity. In addition, it is also possible to show

that yi(nl,n 2 ), the inverse Fourier transform of Yi (Wi,'2),

converges uniformly to y(nl,n2 ) as i goes to infinity.

5



The use of the iterative computation (9) can be visual-
ized as a simple digital filter that processes a sequence of
images (or vectors) rather than a sequence of numbers.

Figure 1 shows the iterative computation as a first-order feed-
back loop, with xi(nl,n 2 ) denoting the input sequence, Yi(nl, n2 )
denoting the output sequence, and i representing the iteration
number. The "STORE" operator in Figure 1 stores the result
of the previous iteration; it is analogcus to the 1-D shift
operator usually represented by z- . To obtain the output signal
y(nl,n 2 ) whose Fourier transform Y(wlw 2 ) is given by equa-
tion (7), the input sequence xi (nln 2 ) is taken to be a step
function in the iteration variable i:

xi (nl,n2) = x(nl,n 2 ) for i > 0 (12)

=0 for i < 0

As suggested by equation (9), the initial condition

Y 1 (nl,n2 ) = 0 (13)

is used to begin the iteration at i=0. Then the desired output
y(nl,n2) is realized as the steady state output of the filter

in Figure 1.

C. STABILITY AND CONVERGENCE

Stability of the filter H(wlw 2 ) and the satisfaction of
the convergence criterion by C(wIw 2 ) are not equivalent.

Consider the filter

H(wlIW 2) = /(l-ae- Jl -ae-JW2 + a 2 e- Jl e-JW2 ) (14)
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!A

x i (h, n ) y/ J Y (N, n)

F _ E
C ( 1(n n)

Yi-, (n , n, )

Fig. 1. The iterative computation can be modeled
as a first-order feedback loop in the iteration
variable i.
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Since H(wIW 2) is a separable filter, it is simple to demon-

strate that H(w1I, 2 ) is stable if and only if lal < 1.
However,

C(W 1 w2 ) = ae-Jl + ae-J2 -a 2e-l e-J2 (15)

so that

C(O, r) = -2a-a 2  (16)

In particular, for a=0.5,

IC(r,Tr) = 1.25 > 1 (17)

which violates the convergence criterion.

In general, if A(wIw 2 ) is a trigometric polynominal

given by equation (2) and C(wlw 2 ) is a trigometric polynominal

given by equations (4) and (5), then H(wIw 2 ) will be continuous

and finite as long as C(wI,1 2 ) # 1. In this case, the 2-D

inverse Fourier transform can be applied to H(w 1 W2 ) to yield

the impulse response h(nlrn2 ), which will satisfy

E Z h(nl,n 2) < 0 (18)

n1 n2

Consequently, the condition C(wIW 2 ) 1 is a sufficient test

for BIBO (bounded input-bounded output) stability of H(wIW 2 )

since we are not concerned with the region of support of the

impulse response h(nl,n 2 ). Clearly, if the convergence

criterion JC(WI1 W2) I < 1 is satisfied, then H(wIw 2 ) is stable

since C( 1 , 2 ) Y 1. The converse, however, is not true, as

the counter-example has shown.
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D. TERMINATION OF THE ITERATIVE COMPUTATION

In any practical implementation, the number of iterations

actually computed is finite. Using equation (9), it is straight-

forward to show that the output signal's spectrum after the

Ith iteration is given by

I
Y I(wI' 2 ) = A(wif 2 )X(W1 " 2) z Ci(wl1 2 )

i=0
I( I 2)[ - 12+

= ,w2 H1-C (wiw 2 )] (19)

We can take the ratio YI(W 1I, 2 )/Y(wIW 2 ) as one measure of

the spectral error introduced by terminating the iterative

computation after I iterations. The ratio is complex, in

general. Thus, for this ratio to lie close to unity, it is

necessary to restrict IC(WIw 2 )I so that

Y, (W - 1 = C(Wl1 W2 ) 1+1 < e (20)

Y ( i, 2)

for all frequencies (w1 ",2), where e is a small, positive con-

stant.

If we specify a tolerable degree of spectral error by

fixing c, we can use this relation to tell us how many iterations

will be needed for a given value of IC(W1I, 2)l. Conversely, it

can be used to determine how IC(WIw 2 )1 must be restricted, as

in a filter design algorithm, if the number of iterations I is

specified beforehand.
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In addition, E can be used to compute the space domain

difference between the output signal at the Ith iteration

and the desired output signal. It is straightforward to show

that

ly(nl,n2) - Yi(nl 1n2) I  < EY (21)

where

yY( l, 2 ) dl 2 (22)

7T

Although the bound (21) may not be of practical use since Y

may not be known beforehand, it nevertheless demonstrates

that the sequence of output signals {yi(nl1n2 )) converges

to the desired output signal y(n1 ,n2 ) when the convergence

criterion (11) is satisfied.

The effective frequency response when the iterative

computation is terminated after I iterations is given by
I

SHI (WI , 2 ) = A(w1 1W2) E C(W1 '"2)  (23)
1=0

If we neglect the factor A(w1 ,"2 ) for the moment, HI(WIw 2 )

has the form of a McClellan transformation filter [4,5] whose

tap weights are all equal to one. HI(*,1i 2) can be realized

10



by the structure shown in Figure 2, which embodies the iterative

computation as the signal passes from one stage of the structure

to the next. Figure 2 serves to illustrate the fact that

HI(WIw 2 ) represents the frequency response of a 2-D FIR filter.

Thus, the filter response actually realized when the iterative

computation is terminated is an FIR approximation to the desired

rational frequency response H(w1 W2 ).

In the McClellan transformation, the kernel C(wIw 2 ) is

usually associated with a particular class of 2-D FIR filters

such as those exhibiting approximate circular symmetry. The tap

weights are varied to realize the mapping of a particular I-D

FIR filter into its 2-D counterpart. However, since the itera-

tive computation has the same form at each iteration, the

structure shown in Figure 2 must be identical from one stage to

the next, forcing all the tap weights to be equal. The kernel

C(w1 1 '2 ) itself is varied to approximately realize the desired

frequency response H(wI, 2).

Let us define hI(n1 ,n 2 ) to be the effective 2-D finite-

extent impulse response implemented by I iterations of the

iterative computation. Because of the nature of the iterative

computation, the effective impulse response grows in extent at
Aeach iteration. For example, if we assume A(wlIW 2 )=l and

c(nl,n2 ) has an NxN region of support, then when the iterative

computation is terminated after I iterations, hi(nl,n2 ) will

have an INxIN region of support. The number of multiplications

required to implement hI(nl,n 2 ) by the iterative computation

however, is only IN2 , in general. Although the area of the non-

zero region of hI(n 1 ,n 2 ) goes up proportionally as 1 2, the in-

crease in the number of multiplications is proportional to I.

Since the terminated iterative implementation can be viewed as

a special case of the McClellan transformation implementation,

the more detailed results of [5] can be applied to questions of

computation and storage.



10 ,"

Fig. 2. The iterative computation, when terminated after I
iterations, can be represented by McClellan transformation
structure with tap weights of unity gain.
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E. EFFECTS OF FINITE PRECISION ARITHMETIC

To examine the effects of finite precision arithmetic

on the accuracy of the output signal, let us return to the

consideration of the iterative computation as the first-order

feedback loop shown in Figure 1. The true output spectrum

Y(W1 ,"2) will satisfy the implicit equation

Y( ,'2) = A(N1 ,W2 )X(wl,W2 ) + C(W1 ,"2 )Y(wIW 2 ) (24)

At each iteration, noise will be injected into the computation.

We shall assume that this noise occurs due to fixed-point

round-off at the summation box in Figure 1. For a particular

ordered pair (nl1n2), the convolution of c(nl,n2) with

Yi-l(niln 2), represented by the operator C(w1 ,w2), and the
subsequent addition to the corresponding point of the signal

a(nl,n2 )*x(nl1 n2 ) can be performed with double-precision

arithmetic and the result rounded back to single precision.

Thus, at each iteration, the computation yields

Yi(lw 2 ) = A(w1 w2)X( IW,2 ) + C(Wl1 W2 )Yi1 (wiw2)

+ Ei (W ,w2) (25)

where Yi(Wl,2) is the spectrum of the signal actually computed

on the ith iteration and ei(wlw2 ) is the spectrum of the com-

putation noise introduced at the ith iteration. If we define

E i(Wlw 2)  Y(W 1,'W2)-Y i (Wi, 2)

13

I



and subtract equation (25) from equation (24), we get

Ei(Wl,1 )" = C(W 1 ,w2 )Ei 1 (WI, 2 ) + ci(wljw 2 ) (26)

which can be interpreted as a first-order difference equation
in the iteration variable i with input ci(wlW 2) and output

Ei(wlW 2 ). Under the assumption that the noise spectrum

Ei( (l, 2) is uncorrelated from iteration to iteration, the
techniques used in chapter 9 of (6] can be applied to
equation (26) to give the expression for the output noise
power under the assumption that C(w1 ,W2 ) satisfies the con-

vergence criterion (11). Thus, if a2 (W1, 2 ) represents the

noise power at (wiW 2 ) due to arithmetic round-off and
aE2(WlW2) represents the noise power in the output spectrum,

then

2

2 a E (w 1,'2)
E 1'12)2 1z - jc( z 2) W2 (27)

C(wi "2 ) is a constant and equal to

P then the total noise power (TNP) in the output is given by

T

TNPw 4w2  f l-Cw 1 )i2 dw 1dw 2  (28)

14



Intuitively, we would expect that if C(wlw 2 ) satisfies

the convergence criterion (11), then the effects of the

round-off noise i~ (Wilw 2 ) introduced at the ith iteration

would gradually die out as the iterative computation continues.

Of course, additional round-off noise is introduced at each

iteration, and equation (28) gives the total noise power in

the output signal at the steady state.

If we define ci(nl,n2 ) as the inverse Fourier transform

of Ci(Wlpw 2 ), then equation (28) can be re-written using

Parseval's theorem.

TNP = P Z E E c (nl,n 2 ) (29)
i=O n1 n 2

When the iterative computation is terminated after I iterations,

the summation over i in equation (29) extends only to i=I. This

result is similar to that obtained in [5] for the total noise

power of a McClellan transformation implementation like Figure 2.
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F. A SIMPLE EXAMPLE

Suppose we want to implement a 2-D digital filter whose

frequency response is approximately circularly symmetric

and is approximately equal to a given real, symmetric I-D

rational function along each frequency axis. The McClellan

transformation can be applied to the 1-D rational function to

generate a real, symmetric 2-D rational frequency response

which can be implemented approximately by the iterative

computation. For example, consider the 1-D rational function

H(W) = A(w)
l-C(W)

where
4

A(M) a(O) + Z 2a(m) cos mw
m=l

2
C(w) = £ 2c(n) cos nw

n=l

with

a(0) - 0.50033

2a(l) - 0.81561

2a(2) = 0.41543

2a(3) - 0.11311

2a(4) - -0.000037952

and

2c(l) = -0.0010153

2c(2) = -0.83047
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This function is real and symmetric, and it has the shape shown

in Figure 3. When the McClellan transformation for circular

symmetry is applied to this function, we get the real, sym-

metric 2-D rational function shown in Figure 4. This function

has the familiar form

H(w 1 ,Ww2 ) =2)/[I-C(wI, 2)]

and furthermore, C(w1 ,w2 ) satisfies the convergence criterion

(11). Figure 5 gives an indication of the form of C(wIW 2 ) by

showing its value along the w1 frequency axis.

After 20 iterations, the surface plot of the effective

frequency response of the iterative implementation is not dis-

tinguishable from Figure 4 because of the resolution limitations

of the plotting device. To observe the convergence of HI( I,

to the desired HI(W 1w2 ), it is more informative to plot the

values of HI(W 1 w 2 ) along either of the two frequency axes.

Figure 6 shows HI(W 1 W2 ) evaluated along the w1 frequency axis

for I=15,20 and 25 iterations.

When comparing Figures 6 and 3, it is easiest to see the

difference between H(w 1w2 ) and HI(W 1 W 2 ) at the origin, where

H(w1 W 2 ) and IC( 1 w2 )I are large. Here, IC(0,0)I 0.83, so

that after 15 iterations, the relative error E defined in

equation (20) and expressed as a percentage is approximately

6.1%. After 20 iterations, e is approximately 2.4%, and after

25 iterations, E is less than 1%.
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Fig. 3. The real, symmetric 1-D rational frequency response H(w)
is shown for 0 < w/2v < 0.5. It also represents the values of
H(WlW 2) shown in Figure 4 along either of the two frequency
axes.
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c1J2

(T,w)

Fig. 4. The real, symmetric 2-D rational frequency response
H(w 1 w2 ) is obtained by applying the circularly symmetric
McClellan transformation to the function shown in Figure 3.
For clarity, only the first quadrant is plotted; the other
quadrants are symmetric.
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Fig. 5. The function C(wl1 w2 ), evaluated along either of
the frequency axes, is equal to C(w). It is plotted for
0 < w/2r < 0.5.
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Fig. 6. The frequency HI(w~l,w2) is evaluated along the w
frequency axis for (a). I=15 iterations, (b). I=20 iterations
and (c). I=25 iterations. Compare these plots with Figure 3
to note the convergence of H,(lw)to H(wl,w2 ).
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G. DISCUSSION

The iterative implementation presented here has a number of

interesting facets. It can be used to implement a 2-D rational

frequency response in an approximate manner by decomposing it

into a sequence of FIR filtering operations. Thus, non-causal

2-D IIR filters can be realized approximately by this implemen-

tation without performing the computationally-intensive task of

spectral factorization (or partial fraction expansion).

The rational frequency response to be implemented does not

need to be tested for BIBO stability. Instead, it must satisfy

a convergence criterion which is somewhat more restrictive and

which implies BIBO stability.

The terminated iterative implementation can be regarded as

a special case of a transposed direct form implementation of a

McClellan transformation filter (Figure 2), which in turn is a

generalization of a transposed direct form tapped delay-line

filter [3 1. In the terminated iterative implementation, the

tap weights all turn out to be equal to one. The structure of

figure 2 is constrained to be identical at each stage, since the

iterative computation has th2 same form at each iteration.

Because of this property, the terminated iterative implementation

does not have quite the generality of the McClellan transformation

implementation. On the other hand, the fixed tapped weights do

not enter in any design algorithm minimizations, nor do they

require an additional multiplication of the 2-D signal by a constant

at each iteration.

By viewing the iterative computation as the first-order

feedback loop shown in Figure 1, we are led to two possible

generalizations of the iterative implementation. The first is

22



to consider more complicated signal flow diagrams such as a

second-order feedback loop. The second is to consider an input

sequence of 2-D signals which may vary in some way from one

iteration to the next.

The iterative implementation provides one method of approx-

imately implementing a real, symmetric 2-D rational transfer

function with a device that can realize small-extent FIR filter

kernels. It also provides an interesting theoretical bridge

between 2-D IIR filters and 2-D FIR filters which may be of use

in conceptualizing relationships between these two predominant

class of filters.

23



REFERENCES

1. Michael P. Ekstrom and John W. Woods, "irwo Dimensional

Spectral Factorization with Applications in Recursive
Digital Filtering," IEEE Trans. Acoust., Speech, and
Signal Processing ASSP-24, 115 (1976).

2. Dan E. Dudgeon, "Two-Dimensional Recursive Filtering,"

Sc.D thesis, M.I.T. Department of Electrical Engineering
and Computer Science (May 1974).

3. James H. McClellan, "The Design of Two-Dimensional Digital
Filters by Transformation," Proc. 7th Princeton Conference

on Information Sciences and Systems (March 1973).

4. Russell M. Mersereau, Wolfgang F.G. Mecklenbrauker,

and Thomas F. Quatieri, Jr., "McClellan Transformations

for Two-Dimensional Digital Filtering: I - Design,"

IEEE Trans. Circuits and Systems CAS-23, 405 (1976).

5. Wolfgang F.G. Mecklenbrauker and Russell M. Mersereau,

"McClellan Transformations for Two-Dimensional Digital

Filtering: II - Implementation," IEEE Trans. Circuits

and Systems CAS-23, 414 (1976).

6. Alan V. Oppenheim and Ronald W. Schafer, Digital Signal
Processing (Prentice-Hall, Englewood Cliffs, NJ, 1975).

24



UNCLASSIFIED
SECURITY C ASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
SI. REPORAUM.L__ "2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subsitle) S. TYPE OF REPORT & PERIOD COVERED
4 TI T t u " 1. T e h n ic a l $ 0 t 5  ,

I o~d. ....
An Iterative Implementation for 2-D Digital Filters 6. P N ORG R NME.... '--- '" 6 PEFORMNG RG. REPORT NUMBER

Technical Note 1980-6

7AUTHOR(s) ,-7S. CONTRACT OR GRANT NUMBER(s)

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

Lincoln Laboratory, M.I.T.
P.O. Box 73 Pr -a No.62702F
Lexington, MA 02173 o'-5

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Air Force Systems Command, USAF .. a . J 6 Feb]
Andrews AFB- ..- , UM F
Washington, DC 20331

14. -MONITORING AGENCY NAME & ADDRESS (if different from Controing Office) 15. SECURITY CLASS. (of this report)

Electronic Systems Division Unclassified
Hanscom APB is. DECLASSIFICATION DOWNGRADING
Bedford, MA 01731 SCHEDULE

16. DISTRIBUTION STATEMENT (olthis Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of eke abstract entered in Block 20, if different fr /mReport)

18. SUPPLEMENTARY NOTES

None

19. KEY WORDS (Coatinue on reverse side if nec sary md identify by block number)

digital filters
iterative algorithms
multidimensional signal processing

20. ABSTRACT (Continue on reverse side if neeessay and identify by block number)

A 2-D digital filter with a rational frequency response can be expanded into an infinite
sequence of filtering operations. Each filtering operation can be implemented by convolution
with a low-order 2-D finite-extent impulse response. This sequence of filtering operations
can be viewed as an iteration where a new estimate of the output signal is formed from the
previous estimate. If a convergence constraint is satisfied, the sequence of estimates will
approach the desired output signal. In practice, the number of iterations is finite. Conse-
quently, the frequency response that is actually realized by the iterative implementation is
an approximation to the desired rational frequency response.

DD FORM 1473 EDITION OP 1 NOV 63 IS OBSOLETE
I JAN 73 UNCLASSIFIED.

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)


